muestra representativa vs. muestra aleatoria: una visión general
al realizar análisis estadísticos, economistas e investigadores buscan reducir el sesgo de muestreo a un nivel casi insignificante. El peligro del sesgo de muestreo es que puede resultar en una muestra sesgada de una población (o factores no humanos) en la que todos los individuos, o instancias, no tenían la misma probabilidad de haber sido seleccionados.,
conclusiones clave
- al realizar análisis estadísticos, los economistas e investigadores buscan reducir el sesgo de muestreo a un nivel casi insignificante.
- El peligro del sesgo de muestreo es que puede resultar en una muestra sesgada de una población (o factores no humanos) en la que todos los individuos, o instancias, no tenían la misma probabilidad de haber sido seleccionados.
- si no se tiene en cuenta el sesgo de muestreo, los resultados de un estudio o un análisis pueden atribuirse erróneamente.,
- El muestreo representativo y el muestreo aleatorio son dos técnicas utilizadas para ayudar a garantizar que los datos estén libres de sesgos.
- Una muestra representativa es un grupo o conjunto elegido de una población estadística más grande de acuerdo con características específicas.
- Una muestra aleatoria es un grupo o conjunto elegido de manera aleatoria de una población más grande.
para reducir la probabilidad de muestras sesgadas, los estadísticos y economistas generalmente intentan garantizar que se cumplan tres criterios básicos en cada análisis o estudio de muestras., De esta manera, los estadísticos y economistas pueden hacer inferencias más seguras sobre una población general a partir de los resultados obtenidos.
- estas muestras deben ser representativas de la población estudiada.
- deben ser elegidos al azar, lo que significa que cada miembro de la población mayor tiene las mismas posibilidades de ser elegido.
- deben ser lo suficientemente grandes para no sesgar los resultados. El tamaño óptimo del grupo de muestra depende del grado preciso de confianza requerido para hacer una inferencia.,
el muestreo representativo y el muestreo aleatorio son dos técnicas utilizadas para ayudar a garantizar que los datos estén libres de sesgo. Estas técnicas de muestreo no son mutuamente excluyentes. De hecho, a menudo se utilizan en tándem para reducir el grado de error de muestreo en un estudio. Cuando se combinan, estos dos métodos permiten una mayor confianza en hacer inferencias estadísticas de la muestra con respecto al grupo más grande.,
muestra representativa
una muestra representativa es un grupo o conjunto elegido de una población estadística más grande o grupo de factores o instancias que replica adecuadamente al grupo más grande de acuerdo con cualquier característica o calidad que esté bajo estudio.
una muestra representativa es paralela a las variables y características clave de la sociedad en general que se examina. Algunos ejemplos incluyen el sexo, la edad, el nivel de educación, el estado socioeconómico o el estado civil., Un tamaño de muestra más grande reduce la probabilidad de errores de muestreo y aumenta la probabilidad de que la muestra refleje con precisión la población objetivo.
muestra aleatoria
una muestra aleatoria es un grupo o conjunto elegido de una población más grande—o grupo de factores de instancias—de una manera aleatoria que permite que cada miembro del grupo más grande tenga la misma oportunidad de ser elegido. Una muestra aleatoria está destinada a ser una representación imparcial de la población más grande., Se considera una forma justa de seleccionar una muestra de una población más grande (ya que cada miembro de la población tiene las mismas posibilidades de ser seleccionado).
consideraciones especiales
para los economistas y estadísticos que recolectan muestras, es imperativo que se aseguren de minimizar el sesgo. Si no se tiene en cuenta el sesgo de muestreo, los resultados de un estudio o un análisis pueden atribuirse erróneamente. El muestreo representativo es uno de los métodos clave para lograr esto, ya que dichas muestras replican lo más cerca posible elementos de la población más grande bajo estudio.,
esto por sí solo, sin embargo, no es suficiente para hacer que el sesgo de muestreo sea insignificante. La combinación de la técnica de muestreo aleatorio con el método de muestreo representativo reduce aún más el sesgo porque ningún miembro específico de la población representativa tiene una mayor probabilidad de selección en la muestra que cualquier otro.
una de las técnicas más eficaces es la estratificación. Con la estratificación, la población mayor se divide en subgrupos-o estratos-de naturaleza bastante homogénea. Luego, se selecciona un número igual de miembros del grupo de cada estrato.,
otro método común para lograr una muestra aleatoria o representativa se conoce como muestreo sistemático. Con este método, para comenzar, los miembros-o elementos-de un estudio, se eligen a partir de un punto de partida Aleatorio. Luego, la selección procede a intervalos fijos y periódicos.,